
Chapter

18 Approximation Algorithms

Lily pads, 2006. Michael T. Goodrich. Used with permission.

Contents

18.1 The Metric Traveling Salesperson Problem 511

18.2 Approximations for Covering Problems 515

18.3 Polynomial-Time Approximation Schemes 518

18.4 Backtracking and Branch-and-Bound 521

18.5 Exercises . 525

508 Chapter 18. Approximation Algorithms

Astronomers can determine the composition and distance of galaxies and stars

by performing a spectrographic analysis of the light coming from these objects.

Doing such an analysis involves collecting light from one of these objects over

a relatively long period of time, and transmitting this light through a fiber-optic

cable to a spectroscope. The spectrograph then splits this light into its various fre-

quencies and measures the intensities of these light frequencies. By matching the

patterns of high and low light frequencies coming from such an astronomical ob-

ject to known patterns for the light emitted when various elements are burned, the

astronomers can determine the elements that are present in the object. In addition,

by observing the amount that these patterns are shifted to the red end of the spec-

trum, astronomers can also determine the distance of this object from earth. This

distance can be determined using estimates for the speed at which the universe is

expanding, because of the Doppler effect, where light wavelengths increase as an

object is moving away from us.

As an optimization problem, one of the most time-consuming parts of this pro-

cess is the first step—collecting the light from the galaxy or star over a given period

of time. To do this with a telescope, a large aluminum disk the size of the diameter

of the telescope is used. This disk is placed in the focal plane of the telescope,

so that the light from each stellar objects in an observation falls in a specific spot

on the disk. The astronomers know where these spots are located and, before the

disk is placed in the focal plane, they use robotic drilling equipment to drill a hole

in each spot of interest and they insert a fiber-optic cable into each such hole and

connect it to a spectrograph. (See Figure 18.1.)

Aluminum Plug Plate

Fiber Optic Cables

Spectrograph

Sensors

Target object illumination point

Figure 18.1: Aparatus for spectrographic analysis of stellar objects using an alu-

minum plug plate and fiber-optic cables. The aluminum plug plate is placed in the

focal plane of a telescope.

509

As discussed at the beginning of Chapter 17, the problem of finding a fastest

way to drill all these holes is an instance of the traveling salesperson problem (TSP).

According to the abstract formulation of TSP, each of the hole locations is a “city”

and the time it takes to move a robot drill from one hole to another corresponds to

the distance between the cities corresponding to these two holes. Thus, a minimum-

distance tour of the cities that starts and ends at the resting position for the robot

drill is one that will drill the holes the fastest. Unfortunately, as we discuss in the

previous chapter, the decision version of this optimization problem is NP-complete.

Nevertheless, even though this is a difficult problem, it still needs to be solved in

order to do the spectrographic analysis. The astronomers doing spectrographic

analyses might not require the absolutely best solution, however. They might be

happy with a solution that comes close to the optimum, especially if one can prove

that it won’t be too far from this optimum.

In addition to the problem of quickly drilling the holes in a plug plate for a

spectrographic analysis, another optimization problem arises in this application as

well. This problem is to minimize the number of observations needed in order to

collect the spectra of all the stellar objects of interest. In this case, the astronomers

have a map of all the stellar objects of interest and they want to cover it with the

minimum number of disks having the same diameter as the telescope. (See Fig-

ure 18.2.) This optimization problem is an instance of the set cover problem. Each

of the distinct sets of objects that can be included in a single observation is given as

an input set and the optimization problem is to minimize the number of sets whose

union includes all the objects of interest. As with TSP, the decision version of this

problem is also NP-complete, but it is a problem for which an approximation to the

optimum might be sufficient.

Approximation Ratios

In general, many optimization problems whose decision versions are NP-complete

correspond to problems whose solution in the real world can oftentimes save money,

time, or other resources. Thus, the main topic of this chapter is on approximate

ways of dealing with NP-completeness. One of the most effective methods is to

construct polynomial-time algorithms that come close to solving difficult problems.

Although such algorithms do not always produce optimal solutions, in some cases

we can guarantee how close such an approximation algorithm will come to an op-

timal solution. Indeed, we explore several such approximations in this chapter,

including algorithms for the knapsack, vertex cover, traveling salesperson, and set

cover problems.

The general situation is that we have some problem instance x, which could be

an encoding of a set of numbers, a graph, etc. In addition, for the problem we are

interested in solving for x, there will often be a large set, F , of feasible solutions

for x. We also have a cost function, c, that determines a numeric cost c(S) for any

solution S ∈ F . In the general optimization problem, we are interested in finding

510 Chapter 18. Approximation Algorithms

Figure 18.2: An example disk cover for a set of significant stellar objects (smaller

objects are not included). Background image is from Omega Centauri, 2009. U.S.

government image. Credit: NASA, ESA, and the Hubble SM4 ERO team.

a solution S in F , such that

c(S) = OPT = min{c(T) : T ∈ F}.

That is, we want a solution with minimum cost. We could also formulate a maxi-

mization version of the optimization problem, as well, which would simply involve

replacing the above “min” with “max.” To keep the discussion in this section

simple, however, we will typically take the view that, unless otherwise stated, our

optimization goal is minimization.

The goal of an approximation algorithm is to come as close to the optimum

value as possible in a reasonable amount of time. As we have been doing for this

entire chapter, we take the view in this section that a reasonable amount of time is

at most polynomial time.

Ideally, we would like to provide a guarantee of how close an approximation

algorithm comes to the optimal value, OPT . We say that a δ-approximation algo-

rithm for a particular optimization problem is an algorithm that returns a feasible

solution S (that is, S ∈ F), such that

c(S) ≤ δ OPT,

for a minimization problem. For a maximization problem, a δ-approximation algo-

rithm would guarantee OPT ≤ δ c(S). Or, in general, we have

δ ≥ max{c(S)/OPT, OPT/c(S)}.

In this chapter, we study problems for which we can construct δ-approximation

algorithms for various values of δ.

18.1. The Metric Traveling Salesperson Problem 511

18.1 The Metric Traveling Salesperson Problem

In the optimization version of the traveling salesperson problem, or TSP, we are

given a weighted graph, G, such that each edge e in G has an integer weight c(e),
and we are asked to find a minimum-weight cycle in G that visits all the vertices in

G. In this section we study approximation algorithms for a special case of TSP.

Consider a metric version of TSP such that the edge weights satisfy the triangle

inequality. That is, for any three edges (u, v), (v, w), and (u, w) in G,

c((u, v)) + c((v, w)) ≥ c((u, w)).

Also, suppose that every pair of vertices in G is connected by an edge, that is, G is a

complete graph. This instance of TSP is called METRIC-TSP. The above properties,

which hold for any distance metric, and which arise in lots of TSP applications,

imply that the optimal tour of G will visit each vertex exactly once.

18.1.1 A 2-Approximation for METRIC-TSP

Our first approximation algorithm takes advantage of the above properties of G to

design a very simple 2-approximation algorithm for METRIC-TSP. The algorithm

has three steps. In the first step we construct a minimum spanning tree, M , of

G (Section 15.1). In the second step we construct an Euler-tour traversal, E, of

M , that is, a traversal of M that starts and ends at the same vertex and traverses

each edge of M exactly once in each direction (Section 2.3.3). In the third step

we construct a tour T from E by marching through the edges of E, but each time

we have two edges (u, v) and (v, w) in E, such that v has already been visited,

we replace these two edges by the edge (u, w) and continue. In essence, we are

constructing T as a preorder traversal of M . This three-step algorithm clearly runs

in polynomial time. (See Figure 18.3.)

(a) (b) (c) (d)

Figure 18.3: Example run of the 2-approximation algorithm for METRIC-TSP: (a) a

set S of points in the plane, with Euclidean distance defining the costs of the edges

(not shown); (b) the minimum spanning tree, M , for S; (c) an Euler tour, E, of M ;

(d) the approximate TSP tour, T .

512 Chapter 18. Approximation Algorithms

Analysis of the 2-Approximation METRIC-TSP Algorithm

The analysis of why this algorithm achieves an approximation factor of 2 is also

simple. Let us extend our notation so that c(H) denotes the total weight of the edges

in a subgraph H of G. Let S be a solution to METRIC-TSP, that is, an optimal TSP

tour for the graph G. If we delete any edge from S, we get a path, which is, of

course, also a spanning tree. Thus,

c(M) ≤ c(S).

We can also easily relate the cost of E to that of M , as

c(E) = 2c(M),

since the Euler tour E visits each edge of M exactly once in each direction. Finally,

note that, by the triangle inequality, when we construct our tour T , each time we

replace two edges (u, v) and (v, w) with the edge (u, w), we do not increase the

cost of the tour. That is,

c(T) ≤ c(E).

Therefore, we have

c(T) ≤ 2c(S).

(See Figure 18.4.)

Euler tour E of MST M

(twice the cost of M)

Output tour T

(at most the cost of E)

Optimal tour S

(at least the cost of MST M)

Figure 18.4: Illustrating the proof that MST-based algorithm is a 2-approximation

for the TSP optimization problem.

We may summarize this discussion as follows.

Theorem 18.1: There is a 2-approximation algorithm for the METRIC-TSP opti-

mization problem that runs in polynomial time.

This theorem depends heavily on the fact that the cost function on the graph G
satisfies the triangle inequality. In fact, without this assumption, no constant-factor

approximation algorithm for the optimization version of TSP exists that runs in

polynomial time, unless P = NP. (See Exercise C-18.1.)

18.1. The Metric Traveling Salesperson Problem 513

18.1.2 The Christofides Approximation Algorithm

There is a somewhat more complex algorithm, which is known as the Christofides

approximation algorithm, that can achieve an even better approximation ratio than

the above method. Like the above 2-approximation algorithm, the Christofides ap-

proximation algorithm has just a few steps that are applications of other algorithms.

The most difficult step involves computing a minimum-cost perfect matching in an

undirected weighted graph, H , having 2N vertices, that is, a set of N edges in H
that has minimum total weight and such that no two edges are incident on the same

vertex. This is a problem that can be solved in polynomial time, albeit using an

algorithm that is somewhat complicated and thus not included in this book.

Suppose we are given an instance of METRIC-TSP specified as a complete graph

G with weights on its edges satisfying the triangle inequality. The Christofides

approximation algorithm is as follows (See Figure 18.5):

1. Construct a minimum spanning tree, M , for G.

2. Let W be the set of vertices of G that have odd degree in M and let H be

the subgraph of G induced by the vertices in W . That is, H is the graph that

has W as its vertices and all the edges from G that join such vertices. By a

simple argument, we can show that the number of vertices in W is even (see

Exercise R-18.12). Compute a minimum-cost perfect matching, P , in H .

3. Combine the graphs M and P to create a graph, G′, but don’t combine par-

allel edges into single edges. That is, if an edge e is in both M and P , then

we create two copies of e in the combined graph, G′.

4. Create an Eulerian circuit, C, in G′, which visits each edge exactly once (un-

like in the 2-approximation algorithm, here the edges of G′ are undirected).

5. Convert C into a tour, T , by skipping over previously visited vertices.

The running time of this algorithm is dominated by Step 2, which takes O(n3)
time. Thus, although it is not as fast as the above 2-approximation algorithm, the

Christofides approximation algorithm achieves a better approximation ratio.

Figure 18.5: Illustrating the Christofides approximation algorithm: (a) a minimum

spanning tree, M , for G; (b) a minimum-cost perfect matching P on the vertices

in W (the vertices in W are shown solid and the edges in P are shown as curved

arcs); (c) an Eulerian circuit, C, of G′; (d) the approximate TSP tour, T .

514 Chapter 18. Approximation Algorithms

Analyzing the Christofides Approximation Algorithm

To begin our analysis of the Christofides approximation algorithm, let S be an opti-

mal solution to this instance of METRIC-TSP and let T be the tour that is produced

by the Christofides approximation algorithm. Because S includes a spanning tree

and M is a minimum spanning tree in G,

c(M) ≤ c(S).

In addition, let R denote a solution to the traveling salesperson problem on H .

Since the edges in G (and, hence, H) satisfy the triangle inequality, and all the

edges of H are also in G,

c(R) ≤ c(S).

That is, visiting more vertices than in the tour R cannot reduce its total cost. Con-

sider now the cost of a perfect matching, P , of H , and how it relates to R, an

optimal traveling salesperson tour of H . Number the edges of R, and ignore the

last edge (which returns to the start vertex). Note that the costs of the set of odd-

numbered edges and the set of even-numbered edges in R sum to c(R); hence,

one of these two sets has total cost at most half of that of R, that is, cost at most

c(R)/2. In addition, the set of odd-numbered edges and the set of even-numbered

edges in R are both perfect matchings; hence, the cost of P , a minimum-weight

perfect matching on the edges of H , will be at most the smaller of these two. That

is,

c(P) ≤ c(R)/2.

Therefore,

c(M) + c(P) ≤ c(S) + c(R)/2 ≤ 3c(S)/2.

Since the edges in G satisfy the triangle inequality, we can only improve the cost

of a tour by making shortcuts that avoid previously visited vertices. Thus,

c(T) ≤ c(M) + c(P),

which implies that

c(T) ≤ 3c(S)/2.

In other words, the Christofides approximation algorithm gives us the following.

Theorem 18.2: There is a (3/2)-approximation algorithm for the METRIC-TSP

optimization problem that runs in polynomial time.

18.2. Approximations for Covering Problems 515

18.2 Approximations for Covering Problems

In this section, we describe greedy approximation algorithms for the VERTEX-

COVER and SET-COVER problems (Section 17.4).

18.2.1 A 2-Approximation for VERTEX-COVER

We begin with a 2-approximation for the VERTEX-COVER problem. In the optimiza-

tion version of this problem, we are given a graph G and we are asked to produce

the smallest set C that is a vertex cover for G, that is, every edge in G is incident

on some vertex in C.

This approximation algorithm is based on the greedy method, as mentioned

above, and is rather simple. It involves picking an edge in the graph, adding both

its endpoints to the cover, and then deleting this edge and its incident edges from

the graph. The algorithm repeats this process until no edges are left. We give the

details for this approach in Algorithm 18.6.

Algorithm VertexCoverApprox(G):

Input: A graph G
Output: A small vertex cover C for G

C ← ∅
while G still has edges do

select an edge e = (v, w) of G
add vertices v and w to C
for each edge f incident to v or w do

remove f from G
return C

Algorithm 18.6: A 2-approximation algorithm for VERTEX-COVER.

We leave the details of how to perform this algorithm in O(n + m) time as a

simple exercise (R-18.1). For the analysis, first observe that each edge e = (v, w)
selected by the algorithm, and used to add v and w to C, must be covered in any

vertex cover. That is, any vertex cover for G must contain v or w (possibly both).

The approximation algorithm adds both v and w to C in such a case. When the

approximation algorithm completes, there are no uncovered edges left in G, for

we remove all the edges covered by the vertices v and w when we add them to C.

Thus, C forms a vertex cover of G. Moreover, the size of C is at most twice that

of an optimal vertex cover for G, since, for every two vertices we add to C, one of

these vertices must belong to the optimal cover. Therefore, we have the following.

Theorem 18.3: There is a 2-approximation algorithm for the VERTEX-COVER

problem that runs in O(n + m) time on a graph with n vertices and m edges.

516 Chapter 18. Approximation Algorithms

18.2.2 A Logarithmic Approximation for SET-COVER

There are some cases when achieving even a constant-factor approximation in poly-

nomial time is difficult. In this section, we study one of the best known of such

problems, the SET-COVER problem (Section 17.4). In the optimization version of

this problem, we are given a collection of sets S1, S2, . . . , Sm, whose union is a

universe U of size n, and we are asked to find the smallest integer k, such that there

is a subcollection of k sets Si1 , Si2 , . . . , Sik with

U =
m⋃

i=1

Si =
k⋃

j=1

Sij .

Although it is difficult to find a constant-factor approximation algorithm that runs in

polynomial time for this problem, we can design an efficient algorithm that has an

approximation factor of O(log n). As with several other approximation algorithms

for hard problems, this algorithm is based on the greedy method (Section 10).

A Greedy Approach

Our algorithm selects sets one at a time, each time selecting the set that has the

most uncovered elements. When every element in U is covered, we are done. We

give a simple pseudocode description in Algorithm 18.7.

Algorithm SetCoverApprox(S):

Input: A collection S of sets S1, S2, . . . , Sm whose union is U
Output: A small set cover C for S

C ← ∅ // The set cover built so far

E ← ∅ // The elements from U currently covered by C
while E 	= U do

select a set Si that has the maximum number of uncovered elements

add Si to C
E ← E ∪ Si

Return C.

Algorithm 18.7: An approximation algorithm for SET-COVER.

This algorithm runs in polynomial time. (See Exercise R-18.2.)

To analyze the approximation factor of the above greedy SET-COVER algorithm,

we will use an amortization argument based on a charging scheme (Section 1.4).

Namely, each time our approximation algorithm selects a set Sj , we will charge the

elements of Sj for its selection.

18.2. Approximations for Covering Problems 517

Specifically, consider the moment in our algorithm when a set Sj is added to

C, and let k be the number of previously uncovered elements in Sj . We must pay

a total charge of 1 to add this set to C, so we charge each previously uncovered

element i of Sj a charge of

c(i) = 1/k.

Thus, the total size of our cover is equal to the total charges made. That is,

|C| =
∑

i∈U

c(i).

To prove an approximation bound, we will consider the charges made to the

elements in each subset Sj that belongs to an optimal cover, C ′. So, suppose that Sj

belongs to C ′. Let us write Sj = {x1, x2, . . . , xnj
} so that Sj’s elements are listed

in the order in which they are covered by our algorithm (we break ties arbitrarily).

Now, consider the iteration in which x1 is first covered. At that moment, Sj has not

yet been selected; hence, whichever set is selected must have at least nj uncovered

elements. Thus, x1 is charged at most 1/nj . So let us consider, then, the moment

our algorithm charges an element xl of Sj . In the worst case, we will have not

yet chosen Sj (indeed, our algorithm may never choose this Sj). Whichever set is

chosen in this iteration has, in the worst case, at least nj−l+1 uncovered elements;

hence, xl is charged at most 1/(nj − l +1). Therefore, the total amount charged to

all the elements of Sj is at most

nj∑

l=1

1

nl − l + 1
=

nj∑

l=1

1

l
,

which is the familiar harmonic number, Hni
. It is well known (for example, see

the Appendix) that Hnj
is O(log nj). Let c(Sj) denote the total charges given to all

the elements of a set Sj that belongs to the optimal cover C ′. Our charging scheme

implies that c(Sj) is O(log nj). Thus, summing over the sets of C ′, we obtain
∑

Sj∈C ′

c(Sj) ≤
∑

Sj∈C ′

b log nj

≤ b|C ′| log n,

for some constant b ≥ 1. But, since C ′ is a set cover,∑

i∈U

c(i) ≤
∑

Sj∈C ′

c(Sj).

Therefore,

|C| ≤ b|C ′| log n.

This fact gives us the following result.

Theorem 18.4: The optimization version of the SET-COVER problem has an O(log n)-
approximation polynomial-time algorithm for finding a cover of a collection of sets

whose union is a universe of size n.

518 Chapter 18. Approximation Algorithms

18.3 Polynomial-Time Approximation Schemes

There are some problems for which we can construct δ-approximation algorithms

that run in polynomial time with δ = 1 + ǫ, for any fixed value ǫ > 0. The running

time of such a collection of algorithms depends both on n, the size of the input,

and also on the fixed value ǫ. We refer to such a collection of algorithms as a

polynomial-time approximation scheme, or PTAS. When we have a polynomial-

time approximation scheme for a given optimization problem, we can tune our

performance guarantee based on how much time we can afford to spend. Ideally,

the running time is polynomial in both n and 1/ǫ, in which case we have a fully

polynomial-time approximation scheme.

Polynomial-time approximation schemes take advantage of a property that some

hard problems possess, namely, that they are rescalable. A problem is said to be

rescalable if an instance x of the problem can be transformed into an equivalent in-

stance x ′ (that is, one with the same optimal solution) by scaling the cost function,

c. For example, TSP is rescalable. Given an instance G of TSP, we can construct an

equivalent instance G ′ by multiplying the distance between every pair of vertices

by a scaling factor s. The traveling salesperson tour in G ′ will be the same as in G,

although its cost will now be multiplied by s.

A Fully Polynomial-Time Approximation Scheme for KNAPSACK

To be more concrete, let us give a fully polynomial approximation scheme for

the optimization version of a well-known problem, KNAPSACK (Sections 10.1 and

17.5). In the optimization version of this problem, we are given a set S of items,

numbered 1 to n, together with a size constraint, s. Each item i in S is given an

integer size, si, and worth, wi, and we are asked to find a subset, T , of S, such that

T maximizes the worth

w =
∑

i∈T

wi while satisfying
∑

i∈T

si ≤ s.

We desire a PTAS that produces a (1 + ǫ)-approximation, for any given fixed con-

stant ǫ. That is, such an algorithm should find a subset T ′ satisfying the size con-

straint such that if we define w ′ =
∑

i∈T ′ wi, then

OPT ≤ (1 + ǫ)w ′,

where OPT is the optimal worth summation, taken over all possible subsets satis-

fying the total size constraint. To prove that this inequality holds, we will actually

prove that

w ′ ≥ (1 − ǫ/2)OPT,

18.3. Polynomial-Time Approximation Schemes 519

for 0 < ǫ < 1. This will be sufficient, however, since, for any fixed 0 < ǫ < 1,

1

1 − ǫ/2
< 1 + ǫ.

To derive a PTAS for KNAPSACK, we take advantage of the fact that this prob-

lem is rescalable. Suppose we are given a value of ǫ with 0 < ǫ < 1. Let wmax

denote the maximum worth of any item in S. Without loss of generality, we assume

that the size of each item is at most s (for an item larger than this could not fit in the

knapsack). Thus, the item with worth wmax defines a lower bound for the optimal

value. That is, wmax ≤ OPT . Likewise, we can define an upper bound on the

optimal solution by noting that the knapsack can at most contain all n items in S,

each of which has worth at most wmax. Thus, OPT ≤ n wmax. To take advantage

of the rescalability of KNAPSACK, we round each worth value wi to wi
′, the nearest

smaller multiple of M = ǫwmax/2n. Let us denote the rounded version of S as S ′,

and let us also use OPT
′ to denote the solution for this rounded version S ′. Note

that, by simple substitution, OPT ≤ 2n2M/ǫ. Moreover, OPT
′ ≤ OPT , since we

rounded every worth value in S down to form S ′. Thus, OPT
′ ≤ 2n2M/ǫ.

Therefore, let us turn to our solution for the rounded version S ′ of the KNAPSACK

problem for S. Since every worth value in S ′ is a multiple of M , any achievable

worth of a collection of items taken from S ′ is also a multiple of M . Moreover,

there are just N = ⌈2n2/ǫ⌉ such multiples that need to be considered, because

of the upper bound on OPT
′. We can use dynamic programming to construct an

efficient algorithm for finding the optimal worth for S ′. In particular, let us define

the parameter

s[i, j] = the size of the smallest set of items in {1, 2, . . . , j} with worth iM.

The key insight to the design of a dynamic programming algorithm for solving the

rounded KNAPSACK problem is the observation that we can write

s[i, j] = min{s[i, j − 1], sj + s[i − (wj
′/M), j − 1]},

for i = 1, 2, . . . , N , and j = 1, 2, . . . , n. (See Figure 18.8.)

The above equation for s[i, j] follows from the fact that item j will either con-

tribute or not contribute to the smallest way of achieving worth iM from the items

in {1, 2, . . . , j}. In addition, note that for the base case, j = 0, when no items at

all are included in the knapsack, then

s[i, 0] = +∞,

for i = 1, 2, . . . , N . That is, such a size is undefined. In addition,

s[0, j] = 0,

for j = 1, 2, . . . , n, since we can always achieve worth 0 by including no items in

the knapsack. The optimal value is defined by

OPT
′ = max{iM : s[i, n] ≤ s}.

This is the value that is output by our PTAS algorithm.

520 Chapter 18. Approximation Algorithms

Analysis of the PTAS for KNAPSACK

We can easily convert the above description into a dynamic programming algorithm

that computes OPT
′ in O(n3/ǫ) time. Such an algorithm gives us the value of an

optimal solution, but we can easily translate the dynamic programming algorithm

for computing the size into one for the actual set of items.

Let us consider, then, how good an approximation OPT
′ is for OPT . Recall

that we reduced the worth wi of each item i by at most M = ǫwmax/2n. Thus,

OPT
′ ≥ OPT − ǫwmax/2,

since the optimal solution can contain at most n items. Since OPT ≥ wmax, this in

turn implies that

OPT
′ ≥ OPT − ǫOPT/2 = (1 − ǫ/2)OPT.

Thus, OPT ≤ (1 + ǫ)OPT
′, which was what we wished to prove. The running

time of our approximation algorithm is O(n3/ǫ). Our scheme of designing an effi-

cient algorithm for any given ǫ > 0 gives rise to a fully polynomial approximation

scheme, since the running time is polynomial in both n and 1/ǫ. This fact gives us

the following.

Theorem 18.5: The KNAPSACK optimization problem has a fully polynomial ap-

proximation scheme that achieves a (1 + ǫ)-approximation factor in O(n3/ǫ) time,

where n is the number of items in the KNAPSACK instance and 0 < ǫ < 1 is a given

fixed constant.

i

j

+ s
j

s

min

j - 1

i - (w'j /M)

Figure 18.8: Illustration of the equation for s[i, j] used in the dynamic program for

the scaled version of KNAPSACK.

18.4. Backtracking and Branch-and-Bound 521

18.4 Backtracking and Branch-and-Bound

At this point, we know that there are many problems to be NP-complete. Thus,

unless P = NP, which the majority of computer scientists believes is not true, it is

impossible to solve any of these problems in polynomial time. Nevertheless, many

of these problems arise in real-life applications where solutions to them need to be

found, even if finding these solutions may take a long time. Thus, in this section,

we address techniques for dealing with NP-completeness that have shown much

promise in practice. These techniques allow us to design algorithms that can find

solutions to hard problems, often in a reasonable amount of time. In this section,

we study the methods of backtracking and branch-and-bound.

18.4.1 Backtracking

The backtracking technique is a way to build an algorithm for some hard problem

L. Such an algorithm searches through a large, possibly even exponential-size, set

of possibilities in a systematic way. The search strategy is typically optimized to

avoid symmetries in problem instances for L and to traverse the search space so as

to find an “easy” solution for L if such a solution exists.

The backtracking technique takes advantage of the inherent structure that many

NP-complete problems possess. Recall that acceptance for an instance x in a prob-

lem in NP can be verified in polynomial time given a polynomial-sized certificate.

Oftentimes, this certificate consists of a set of “choices,” such as the values assigned

to a collection of Boolean variables, a subset of vertices in a graph to include in a

special set, or a set of objects to include in a knapsack. Likewise, the verification

for a certificate often involves a simple test of whether the certificate demonstrates

a successful configuration for x, such as satisfying a formula, covering all the edges

in a graph, or conforming to certain performance criteria. In such cases, we can use

the backtracking algorithm, given in Algorithm 18.9, to systematically search for

a solution to our problem, if such a problem exists.

The backtracking algorithm traverses through possible “search paths” to locate

solutions or “dead ends.” The configuration at the end of such a path consists of a

pair (x, y), where x is the remaining subproblem to be solved and y is the set of

choices that have been made to get to this subproblem from the original problem

instance. Initially, we give the backtracking algorithm the pair (x, ∅), where x
is our original problem instance. Anytime the backtracking algorithm discovers

that a configuration (x, y) cannot lead to a valid solution no matter how additional

choices are made, then it cuts off all future searches from this configuration and

“backtracks” to another configuration. In fact, this approach gives the backtracking

algorithm its name.

522 Chapter 18. Approximation Algorithms

Algorithm Backtrack(x):

Input: A problem instance x for a hard problem

Output: A solution for x or “no solution” if none exists

F ← {(x, ∅)}. // F is the “frontier” set of subproblem configurations

while F 	= ∅ do

Select from F the most “promising” configuration (x, y).
Expand (x, y) by making a small set of additional choices.

Let (x1, y1), (x2, y2), . . ., (xk, yk) be the set of new configurations.

for each new configuration (xi, yi) do

Perform a simple consistency check on (xi, yi).
if the check returns “solution found” then

return the solution derived from (xi, yi)
if the check returns “dead end” then

Discard the configuration (xi, yi). // Backtrack

else

F ← F ∪ {(xi, yi)} // (xi, yi) starts a promising search path

return “no solution”

Algorithm 18.9: The template for a backtracking algorithm.

Filling in the Details

In order to turn the backtracking strategy into an actual algorithm, we need only fill

in the following details:

1. Define a way of selecting the most “promising” candidate configuration from

the frontier set F .

2. Specify the way of expanding a configuration (x, y) into subproblem config-

urations. This expansion process should, in principle, be able to generate all

feasible configurations, starting from the initial configuration, (x, ∅).

3. Describe how to perform a simple consistency check for a configuration

(x, y) that returns “solution found,” “dead end,” or “continue.”

If F is a stack, then we get a depth-first search of the configuration space. In

fact, in this case we could even use recursion to implement F automatically as

a stack. Alternatively, if F is a queue, then we get a breadth-first search of the

configuration space. We can also imagine other data structures to implement F ,

but as long as we have an intuitive notion of how to select the most “promising”

configuration from F with each iteration, then we have a backtracking algorithm.

So as to make this approach more concrete, let us work through an application

of the backtracking technique to the CNF-SAT problem.

18.4. Backtracking and Branch-and-Bound 523

A Backtracking Algorithm for CNF-SAT

Recall that in the CNF-SAT problem we are given a Boolean formula S in con-

junctive normal form (CNF) and are asked whether S is satisfiable. To design

a backtracking algorithm for CNF-SAT, we will systematically make tentative as-

signments to the variables in S and see if such assignments make S evaluate imme-

diately to 1 or 0, or yield a new formula S ′ for which we could continue making

tentative value assignments. Thus, a configuration in our algorithm will consist

of a pair (S ′, y), where S ′ is a Boolean formula in CNF, and y is an assignment

of values to Boolean variables not in S ′ such that making these assignments in S
results in the formula S ′.

To formulate our backtracking algorithm, then, we need to give the details of

each of the three components to the backtracking algorithm. Given a frontier F of

configurations, we make our most “promising” choice, which is the subformula S ′

with the smallest clause. Such a formula is the most constrained of all the formulas

in F ; hence, we would expect it to hit a dead end most quickly if that is indeed its

destiny.

Let us consider, then, how to generate subproblems from a subformula S ′. We

do this by locating a smallest clause C in S ′, and picking a variable xi that appears

in C. We then create two new subproblems that are associated with our assigning

xi = 1 and xi = 0, respectively.

Finally, we must say how to process S ′ to perform a consistency check for an

assignment of a variable xi in S ′. We begin this processing by reducing any clauses

containing xi based on the assigned 0 or 1 value of xi (depending on the choice we

made). If this reduction results in a new clause with a single literal, xj or xj ,

we also perform the appropriate value assignment to xj to make this single-literal

clause satisfied. We then process the resulting formula to propagate the assigned

value of xj . If this new assignment in turn results in a new single-literal clause, we

repeat this process until we have no more single-literal clauses. If at any point we

discover a contradiction (that is, clauses xi and xi, or an empty clause), then we

return “dead end.” If we reduce the subformula S ′ all the way to the constant 1,

then we return “solution found,” along with all the variable assignments we made to

reach this point. Otherwise, we derive a new subformula, S ′′, such that each clause

has at least two literals, along with the value assignments that lead from the original

formula S to S ′′. We call this operation the reduce operation for propagating an

assignment of value to xi in S ′.

Fitting all of these pieces into the template for the backtracking algorithm re-

sults in an algorithm that solves the CNF-SAT problem in about as fast a time as

we can expect. In general, the worst-case running time for this algorithm is still

exponential, but the backtracking can often speed things up. Indeed, if every clause

in the given formula has at most two literals, then this algorithm runs in polynomial

time. (See Exercise C-17.6.)

524 Chapter 18. Approximation Algorithms

18.4.2 Branch-and-Bound

The backtracking algorithm works for decision problems, but it is not designed

for optimization problems, where, in addition to having some feasibility condition

be satisfied for a certificate y associated with an instance x, we also have a cost

function f(x) that we wish to minimize or maximize (without loss of generality, let

us assume the cost function should be minimized). Nevertheless, we can extend the

backtracking algorithm to work for such optimization problems, and in so doing

derive the algorithmic technique known as branch-and-bound.

The branch-and-bound technique has all the elements of backtracking, except

that rather than simply stopping the entire search process any time a solution is

found, we continue processing until the best solution is found. In addition, the

algorithm has a scoring mechanism to always choose the most promising configu-

ration to explore in each iteration.

To provide for the optimization criterion of always selecting the “most promis-

ing” configuration, we extend the three assumptions for a backtracking algorithm

to add one more condition:

• For any configuration, (x, y), we assume we have a function, lb(x, y), which

is a lower bound on the cost of any solution derived from (x, y).

To make the branch-and-bound approach more concrete, let us consider how it

can be applied to solve the optimization version of the traveling salesperson (TSP)

problem. In the optimization version of this problem, we are given a graph G with

a cost function c(e) defined for each edge e in G, and we wish to find the smallest

total-cost tour that visits every vertex in G, returning back to its starting vertex.

We can design an algorithm for TSP by computing for each edge e = (v, w), the

minimum-cost path that begins at v and ends at w while visiting all other vertices

in G along the way. To find such a path, we apply the branch-and-bound technique.

We generate the path from v to w in G − {e} by augmenting a current path by one

vertex in each loop of the branch-and-bound algorithm.

• After we have built a partial path P , starting, say, at v, we only consider

augmenting P with vertices in not in P .

• We can classify a partial path P as a “dead end” if the vertices not in P are

disconnected in G − {e}.

• To define the lower-bound function, lb, we can use the total cost of the edges

in P plus c(e). This will certainly be a lower bound for any tour that will be

built from e and P .

In addition, after we have run the algorithm to completion for one edge e in G, we

can use the best path found so far over all tested edges, rather than restarting the

current best solution b at +∞. The running time of the resulting algorithm will

still be exponential in the worst case, but it will avoid a considerable amount of

unnecessary computation in practice.

18.5. Exercises 525

18.5 Exercises

Reinforcement

R-18.1 Describe in detail how to implement Algorithm 18.6 in O(n + m) time on an n-

vertex graph with m edges. You may use the traditional operation-count measure

of running time in this case.

R-18.2 Describe the details of an efficient implementation of Algorithm 18.7 and analyze

its running time.

R-18.3 Give an example of a graph G with at least 10 vertices such that the greedy 2-

approximation algorithm for VERTEX-COVER given above is guaranteed to pro-

duce a suboptimal vertex cover.

R-18.4 Give a complete, weighted graph G, such that its edge weights satisfy the triangle

inequality but the MST-based approximation algorithm for TSP does not find an

optimal solution.

R-18.5 Give a pseudocode description of the backtracking algorithm for CNF-SAT.

R-18.6 Give a recursive pseudocode description of the backtracking algorithm, assuming

the search strategy should visit configurations in a depth-first fashion.

R-18.7 Give a pseudocode description of the branch-and-bound algorithm for TSP.

R-18.8 The branch-and-bound program in Section 18.4.2, for solving the KNAPSACK

problem, uses a Boolean flag to determine when an item is included in a solution

or not. Show that this flag is redundant. That is, even if we remove this field, there

is a way (using no additional fields) to tell if an item is included in a solution or

not.

R-18.9 Suppose G is a complete undirected graph such that every edge has weight 1 or

2. Show that the weights in G satisfy the triangle inequality.

R-18.10 Suppose G is an undirected weighted graph such that G is not the complete graph

but every edge in G has positive weight. Create a complete graph, H , having the

same vertex set as G, such that if (v, u) is an edge in G, then (v, u) has the same

weight in H as in G, and if (v, u) is not an edge in G, then (v, u) has weight in

H equal to the length of a shortest path from v to u in G. Show that the edge

weights in H satisfy the triangle inequality.

R-18.11 Suppose we are given the following collection of sets:

S1 = {1, 2, 3, 4, 5, 6}, S2 = {5, 6, 8, 9}, S3 = {1, 4, 7, 10},

S4 = {2, 5, 7, 8, 11}, S5 = {3, 6, 9, 12}, S6 = {10, 11}.

What is the optimal solution to this instance of the SET-COVER problem and

what is the solution produced by the greedy algorithm?

R-18.12 Show that the number of vertices of odd degree in a tree is even.

526 Chapter 18. Approximation Algorithms

Creativity

C-18.1 Consider the general optimization version of the TSP problem, where the un-

derlying graph need not satisfy the triangle inequality. Show that, for any fixed

value δ ≥ 1, there is no polynomial-time δ-approximation algorithm for the gen-

eral TSP problem unless P = NP.

Hint: Reduce HAMILTONIAN-CYCLE to this problem by defining a cost function

for a complete graph H for the n-vertex input graph G so that edges of H also in

G have cost 1 but edges of H not in G have cost δn more than 1.

C-18.2 Derive an efficient backtracking algorithm for the HAMILTONIAN-CYCLE prob-

lem.

C-18.3 Derive an efficient backtracking algorithm for the KNAPSACK decision problem.

C-18.4 Derive an efficient branch-and-bound algorithm for the KNAPSACK optimization

problem.

C-18.5 Derive a new lower-bound function, lb, for a branch-and-bound algorithm for

solving the TSP optimization problem. Your function should always be greater

than or equal to the lb function used in Section 18.4.2, but still be a valid lower-

bound function. Describe an example where your lb is strictly greater than the lb
function used in Section 18.4.2.

C-18.6 In the bottleneck traveling salesperson problem (TSP), we are given an undi-

rected graph G with weights on its edges and asked to find a tour that visits the

vertices of G exactly once and returns to the start so as to minimize the cost of

the maximum-weight edge in the tour. Assuming that the weights in G satisfy

the triangle inequality, design a polynomial-time 3-approximation algorithm for

bottleneck TSP.

Hint: Show that it is possible to turn an Euler-tour traversal, E, of an MST for G
into a tour visiting each vertex exactly once such that each edge of the tour skips

at most two vertices of E.

C-18.7 In the Euclidean traveling salesperson problem, cities are points in the plane and

the distance between two cities is the Euclidean distance between the points for

these cities, that is, the length of the straight line joining these points. Show that

an optimal solution to the Euclidean TSP is a simple polygon, that is, a connected

sequence of line segments such that no two ever cross.

C-18.8 Consider the KNAPSACK problem, but now instead of implementing the PTAS

algorithm given in the book, we use a greedy approach of always picking the next

item that maximizes the ratio of value over weight (as in the optimal way to solve

the fractional version of the KNAPSACK problem). Show that this approach does

not produce a c-approximation algorithm, for any fixed value of c.

C-18.9 Consider a greedy algorithm for the VERTEX-COVER problem, where we repeat-

edly choose a vertex with maximum degree, add it to our cover, and then remove

it and all its incident edges. Show that this algorithm does not, in general, pro-

duce a 2-approximation.

Hint: Use a bipartite graph where all the vertices on one side have the same

degree.

18.5. Exercises 527

C-18.10 In the HITTING-SET problem, we are given a set U of items, and a collection of

subsets of U , S1, S2, . . . , Sm. The problem is to find a smallest subset T of U
such that T “hits” every subset Si, that is, T ∩ Si 	= ∅, for i = 1, . . . , m. Design

a polynomial-time O(log n)-approximation algorithm for HITTING-SET.

Applications

A-18.1 Suppose you are working for a cartography company, that is, a company that

makes maps. Your job is to design a software package that can take as input the

map of some region, R, and label as many of the cities of R as possible. Each

of the n cities in such a region, R, is given by an (x, y) coordinate for the center

of that city. Assume, for the sake of simplifying the problem, that the label, Lc,

for each city, c, is a rectangle (which will contain the name of the city, c) whose

lower-right corner is the (x, y)-location for c. The labels for two cities, c and

d, conflict if Lc intersects Ld. Given your extensive algorithmic background,

you realize that you can model this problem with a graph, G, where you create

a vertex in G for each city and connect cities c and d with an edge if their labels

conflict. Let d = 2m/n be the average degree of the vertices in G, where m
is the number of edges in G. Describe an O(d)-approximation algorithm for

finding the largest number of mutually nonconflicting labels for the cities in a

given region R.

A-18.2 In a synchronous optical network (SONET) ring, a collection of routers are con-

nected with fiber-optic cables to form a single, simple cycle. A message be-

tween two routers, x and y, can then be transmitted by routing it clockwise or

counter-clockwise around the ring. Given a set, M , of messages to transmit,

each specified by a pair of routers (x, y), the ring-loading problem is to route

all the messages in M so as to minimize the maximum load on any link in the

ring (that joins two adjacent routers). Solving such an optimization problem is

useful, since such a solution minimizes the bandwidth needed to transmit all the

messages in M . Describe a 2-approximation for solving the ring-loading prob-

lem.

A-18.3 Suppose you work for a major package shipping company, FedUP, and it is your

job to ship a set of n boxes from Rhode Island to California using a given col-

lection of trucks. You know that these trucks will be weighed at various points

along this route and FedUP will have to pay a penalty if any of these trucks are

overweight. Thus, you would like to minimize the weight of the most heavily

loaded truck. Assuming you know the integer weight of each of the n boxes, de-

scribe a simple greedy algorithm for assigning boxes to trucks and show that this

algorithm has an approximation ratio of at most 2 for the problem of minimizing

the weight of the most heavily loaded truck.

A-18.4 Suppose you work for a major package shipping company, FedUP, as in the pre-

vious exercise, but suppose there is a new law that requires every truck to carry

no more than M pounds, even if it has room for more boxes. Now the optimiza-

tion problem is to use the fewest number of trucks possible to carry the n boxes

across the country such that each truck is carrying at most M pounds. Describe

528 Chapter 18. Approximation Algorithms

a simple greedy algorithm for assigning boxes to trucks and show that your algo-

rithm uses a number of trucks that is within a factor of 2 of the optimal number

of trucks. You may assume that no box weighs more than M pounds.

A-18.5 Suppose you are preparing an algorithm for the problem of optimally drilling the

holes in an aluminum plug plate to allow it to do a spectrographic analysis of

a set of galaxies. Based on your analysis of the robot drill device, you notice

that the various amounts of time it takes to move between drilling holes satisfies

the triangle inequality. Nevertheless, your supervisor does not want you to use

the MST approximation algorithm or the Christofides approximation algorithm.

Instead, your supervisor wants you to use a nearest-neighbor greedy algorithm for

solving this instance of METRIC-TSP. In this greedy algorithm, one starts with

city number 1 as the “current” city, and then repeatedly chooses the next city to

add to the tour to be the one that is closest to the current city (then making the

added city to be the “current” one). Show that your supervisor’s nearest-neighbor

greedy algorithm does not, in general, result in a 2-approximation algorithm for

METRIC-TSP.

A-18.6 Consider the astronomy application of METRIC-TSP, as in the previous exercise,

but now suppose that you have an improvement to your supervisor’s nearest-

neighbor idea. Your nearest-neighbor greedy algorithm works like this: you start

with city number 1 and add cities one at time, always maintaining a tour, T , of

the cities added so far. Given the current set of cities, C, you find the city, c,

not in C that minimizes the distance to a city, d, that is in C. Then you add d to

T immediately after c, add d to C, and repeat until T is a tour for all the cities.

Show that your nearest-neighbor greedy approach results in a 2-approximation

algorithm for METRIC-TSP.

Chapter Notes

General discussions of approximation algorithms can be found in several other books, in-

cluding those by Hochbaum [101] and Papadimitriou and Steiglitz [170], as well as the

chapter by Klein and Young [127]. The PTAS for KNAPSACK is modeled after a result

of Ibarra and Kim [109], as presented by Klein and Young [127]. Papadimitriou and Stei-

glitz attribute the 2-approximation for VERTEX-COVER to Gavril and Yannakakis. The

2-approximation algorithm for the special case of TSP is due to Rosenkrantz, Stearns, and

Lewis [179]. The O(log n)-approximation for SET-COVER, and its proof, follow from

work of Chvátal [44], Johnson [112], and Lovász [146]. The Christofides approximation

algorithm is due to Nicos Christofides [43].

The discussion of backtracking and branch-and-bound is modeled after discussions

by Lewis and Papadimitriou [143] and Brassard and Bratley [37], where backtracking is

intended for decision problems and branch-and-bound is for optimization problems. Nev-

ertheless, our discussion is also influenced by Neapolitan and Naimipour [164], who alter-

natively view backtracking as a heuristic search that uses a depth-first search of a configu-

ration space and branch-and-bound as a heuristic search that uses breadth-first or best-first

search with a lower-bound function to perform pruning. The technique of backtracking

itself dates to early work of Golomb and Baumert [84].

